document.write( "Question 1033303: Use the half-angle identity to find the exact value of cos([7pi]/[12]) \n" ); document.write( "
Algebra.Com's Answer #647891 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Use the half-angle identity to find the exact value of cos([7pi]/[12])
\n" ); document.write( "------
\n" ); document.write( "cos[7pi/6] = ?
\n" ); document.write( "Reference angle = pi/6
\n" ); document.write( "7pi/6 is in QIII where cos is negative
\n" ); document.write( "So, cos[7pi/6] = -cos(pi/6) = -sqrt(3)/2
\n" ); document.write( "---------------------------------------
\n" ); document.write( "Note:: 7pi/12 = (1/2)[7pi/6]
\n" ); document.write( "----------------------------
\n" ); document.write( "Formula:: cos(x/2) = sqrt[(1+cos(x)/2])
\n" ); document.write( "=====
\n" ); document.write( "Therefore:: cos[7pi/12] = cos[(7pi/6)/2] = sqrt[(1+cos(7pi/6)/2))
\n" ); document.write( "---
\n" ); document.write( "= sqrt[(1-sqrt(3))/2)/2] = sqrt[(1-sqrt(3))/4]
\n" ); document.write( "-------------
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "------------
\n" ); document.write( "
\n" );