document.write( "Question 1033303: Use the half-angle identity to find the exact value of cos([7pi]/[12]) \n" ); document.write( "
Algebra.Com's Answer #647891 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Use the half-angle identity to find the exact value of cos([7pi]/[12]) \n" ); document.write( "------ \n" ); document.write( "cos[7pi/6] = ? \n" ); document.write( "Reference angle = pi/6 \n" ); document.write( "7pi/6 is in QIII where cos is negative \n" ); document.write( "So, cos[7pi/6] = -cos(pi/6) = -sqrt(3)/2 \n" ); document.write( "--------------------------------------- \n" ); document.write( "Note:: 7pi/12 = (1/2)[7pi/6] \n" ); document.write( "---------------------------- \n" ); document.write( "Formula:: cos(x/2) = sqrt[(1+cos(x)/2]) \n" ); document.write( "===== \n" ); document.write( "Therefore:: cos[7pi/12] = cos[(7pi/6)/2] = sqrt[(1+cos(7pi/6)/2)) \n" ); document.write( "--- \n" ); document.write( "= sqrt[(1-sqrt(3))/2)/2] = sqrt[(1-sqrt(3))/4] \n" ); document.write( "------------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "------------ \n" ); document.write( " |