document.write( "Question 1033278: 2cos^2x + cosx = 0 \n" ); document.write( "
Algebra.Com's Answer #647834 by ikleyn(52814)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "2cos^2x + cosx = 0
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "\"2cos%5E2%28x%29\" + \"cos%28x%29\" = \"0\",     (1)\r\n" );
document.write( "\r\n" );
document.write( "\"cos%28x%29%2A%282cos%28x%29%2B1%29\" = \"0\".      (2)\r\n" );
document.write( "\r\n" );
document.write( "So, our equation (2) deploys in two equations:\r\n" );
document.write( "\r\n" );
document.write( "1.  cosx) = 0  --->  x = \"pi%2F2+%2B+k%2Api\",  k = 0, +/-1, +/-2, . . . (3)\r\n" );
document.write( "\r\n" );
document.write( "and\r\n" );
document.write( "\r\n" );
document.write( "2.  2cos(x) + 1 = 0  --->  cos(x) = \"-1%2F2\"  --->  x = \"2pi%2F3+%2B+2k%2Api\",  k = 0, +/-1, +/-2, . . . (4)\r\n" );
document.write( "\r\n" );
document.write( "                                        and/or  x = \"4pi%2F3+%2B+2k%2Api\",  k = 0, +/-1, +/-2, . . . (5)\r\n" );
document.write( "\r\n" );
document.write( "The union of the three sets (3) U (4) U (5) is the set of solutions of the original equation (1).\r\n" );
document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );