document.write( "Question 1032942: The population of a village can be modelled by the function P(x)= -22.5x^2+428x+1100, where x is the number of years since 1990. According to the model, when will the population be the highest?\r
\n" ); document.write( "\n" ); document.write( "Much appreciated
\n" ); document.write( "

Algebra.Com's Answer #647549 by Cromlix(4381)\"\" \"About 
You can put this solution on YOUR website!
Hi there,
\n" ); document.write( "P(x) = -22.5x^2 + 428x + 1100
\n" ); document.write( "To find maximum, differentiate:
\n" ); document.write( "P'(x) = -45x + 428
\n" ); document.write( "P'(x) = 0
\n" ); document.write( "-45x + 428 = 0
\n" ); document.write( "-45x = -428
\n" ); document.write( "x = -428/-45
\n" ); document.write( "x = 9.51
\n" ); document.write( "Nature Table:
\n" ); document.write( "......................... - 9.51 +
\n" ); document.write( "-45x + 428....... + 0 -
\n" ); document.write( "............................ / - \
\n" ); document.write( "Maximum.
\n" ); document.write( "Therefore after 9.5 years the population
\n" ); document.write( "will be at its maximum.
\n" ); document.write( "-22.5(9.5) + 428(9.5) + 1100
\n" ); document.write( "= 4952.
\n" ); document.write( "Hope this helps :-)
\n" ); document.write( "
\n" );