document.write( "Question 1032942: The population of a village can be modelled by the function P(x)= -22.5x^2+428x+1100, where x is the number of years since 1990. According to the model, when will the population be the highest?\r
\n" );
document.write( "\n" );
document.write( "Much appreciated \n" );
document.write( "
Algebra.Com's Answer #647549 by Cromlix(4381)![]() ![]() You can put this solution on YOUR website! Hi there, \n" ); document.write( "P(x) = -22.5x^2 + 428x + 1100 \n" ); document.write( "To find maximum, differentiate: \n" ); document.write( "P'(x) = -45x + 428 \n" ); document.write( "P'(x) = 0 \n" ); document.write( "-45x + 428 = 0 \n" ); document.write( "-45x = -428 \n" ); document.write( "x = -428/-45 \n" ); document.write( "x = 9.51 \n" ); document.write( "Nature Table: \n" ); document.write( "......................... - 9.51 + \n" ); document.write( "-45x + 428....... + 0 - \n" ); document.write( "............................ / - \ \n" ); document.write( "Maximum. \n" ); document.write( "Therefore after 9.5 years the population \n" ); document.write( "will be at its maximum. \n" ); document.write( "-22.5(9.5) + 428(9.5) + 1100 \n" ); document.write( "= 4952. \n" ); document.write( "Hope this helps :-) \n" ); document.write( " |