document.write( "Question 12743: 4th root of negative one \n" ); document.write( "
Algebra.Com's Answer #6464 by khwang(438)\"\" \"About 
You can put this solution on YOUR website!
Since -1 = cos pi + i sin pi
\n" ); document.write( " = cos (pi + 2k pi) + i sin (pi + 2 k pi)
\n" ); document.write( " = cos (2k+1) pi + i sin (2k+1) pi for integer k
\n" ); document.write( "
\n" ); document.write( " By De Moivre’s Theorem, if z = r(cos x + i sin x)
\n" ); document.write( " then \"z%5En+\" = \"r%5En\" (cos nx + i sin nx)
\n" ); document.write( " and \"z%5E%281%2Fn%29+\" = \"r%5E%281%2Fn%29\" (cos \"x%2Fn\" + i sin \"x%2Fn\")
\n" ); document.write( " for integer n.\r
\n" ); document.write( "\n" ); document.write( " Hence, \"%28-1%29%5E%281%2F4%29\" = cos ((2k+1)*pi /4) + i sin ( (2k+1)*pi /4) )
\n" ); document.write( " k= 0,1,2 or 3.\r
\n" ); document.write( "\n" ); document.write( " So, we have four 4th root of -1 as:
\n" ); document.write( " cos (\"pi%2F4\") + i sin (\"pi%2F4\"), ( when k = 0) called the primitive 4th root of -1.
\n" ); document.write( " cos (\"3%2Api%2F4\") + i sin (\"3%2Api%2F4\"), (when k = 1)
\n" ); document.write( " cos (\"5%2Api%2F4\") + i sin (\"5%2Api%2F4\"), (when k = 2)
\n" ); document.write( " cos (\"7%2Api%2F4\") + i sin (\"7%2Api%2F4\"), (when k = 3)\r
\n" ); document.write( "\n" ); document.write( " Note use pi/4 (radians) not degrees. (even we know it is 45 deg)
\n" ); document.write( "
\n" ); document.write( " This is very basic questions of complex numbers. Try to think about it.\r
\n" ); document.write( "\n" ); document.write( " Kenny\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );