document.write( "Question 1030691:
\n" ); document.write( "Suppose we want to be able to predict final exam grades using students' grades from Exam #1 from the beginning of the semester. See the table below.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We obtain the following regression equation: y=0.1309+74.3538x
\n" ); document.write( "The slope, β, can be interpreted as which of the following?
\n" ); document.write( "
\n" ); document.write( "1) For every 1 point increase in the final exam grade, Exam #1 grade will increase by 74.3538 points.
\n" ); document.write( "
\n" ); document.write( "2) For every 1 point increase in Exam #1 grade, the final exam grade will increase by 74.3538 points.
\n" ); document.write( "
\n" ); document.write( "3) For every 1 point increase in Exam #1 grade, the final exam grade will increase by 0.1309 points.
\n" ); document.write( "
\n" ); document.write( "4) For every 1 point increase in the final exam grade, Exam #1 grade will increase by 0.1309 points.
\n" ); document.write( "
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( " \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #645798 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
2) For every 1 point increase in Exam #1 grade, the final exam grade will increase by 74.3538 points. \n" ); document.write( "
\n" );