document.write( "Question 1030232: Help me solve the following using an indirect proof. I am including what I have so far.
\n" ); document.write( "1.(AvB)>(C&D)
\n" ); document.write( "2.(CvE)>~B
\n" ); document.write( "3.(DvF)>~A / ~A&~B
\n" ); document.write( " 4.~(~A&~B) AIP
\n" ); document.write( " 5.~~Av~~B 4,DM
\n" ); document.write( " 6.C&D 1,5 MP
\n" ); document.write( " 7.C 6, Simp
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #645121 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\n" ); document.write( "\n" ); document.write( "
NumberStatementLines UsedReasonNotes
1(A v B) > (C & D)
2(C v E) > ~B
3(D v F) > ~A
:.~A & ~B
4~(~A & ~B)AIP
5~~A v ~~B4DM
6A v B5DN
7C & D1,6MP
8C7Simp
9D7Simp
10C v E8Add
11~B2,10MP
12D v F9Add
13~A3,12MP
14~A & ~B13,11Conj
15[~(~A & ~B)] & [~A & ~B]4,14Conj
16~A & ~B4-15IPSee note below
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: Line 4 and line 14 contradict one another. So IF you make the assumption ~(~A & ~B) (as done on line 4) then it leads to a contradiction (on line 14). That invalidates the iniatial assumption making the opposite of the assumption true. The opposite of ~(~A & ~B) is ~~(~A & ~B) which turns into ~A & ~B\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Abbreivations Used:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Add: Addition
\n" ); document.write( "AIP: Assumption for Indirect Proof
\n" ); document.write( "Conj: Conjunction
\n" ); document.write( "DM: De Morgan's Law
\n" ); document.write( "DN: Double Negation
\n" ); document.write( "IP: Indirect Proof (aka proof by contradiction)
\n" ); document.write( "MP: Modus Ponens
\n" ); document.write( "Simp: Simplification
\n" ); document.write( "
\n" );