document.write( "Question 1029804: Solve the following proof using natural deduction (rules of replacement and rules of implication).\r
\n" );
document.write( "\n" );
document.write( "1. D v Y
\n" );
document.write( "2. Y ⊃ ~(Z ⊃ D)\r
\n" );
document.write( "\n" );
document.write( "/ Y ≡ ~D\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #645038 by robertb(5830)![]() ![]() You can put this solution on YOUR website! 1. D v Y --------------------Hypothesis \n" ); document.write( "2. ~~D v Y --------------------double negation \n" ); document.write( "3. ~D ⊃ Y ---------------------material implication \n" ); document.write( "4. Y ⊃ ~(Z ⊃ D) ---------------hypothesis \n" ); document.write( "5. Y ⊃ ~(~Z v D) --------------M.I. \n" ); document.write( "6. Y ⊃ (Z & ~D) ---------------double neg. and deMorgan's law \n" ); document.write( "7. ~Yv(Z & ~D) ----------------M.I. \n" ); document.write( "8. (~Y v Z)&(~Y v ~D)-----------distributivity \n" ); document.write( "9. ~Y v ~D -------------------simplification \n" ); document.write( "10. Y ⊃ ~D -------------------M.I. \n" ); document.write( "11. (~D ⊃ Y)&(Y ⊃ ~D) ---------conjunction on #3 and #10 \n" ); document.write( "12. Y ≡ ~D -------------------- #11 and logical equivalence for ≡ \n" ); document.write( " |