document.write( "Question 1029267: If the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b? \n" ); document.write( "
Algebra.Com's Answer #644330 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! If the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b? \n" ); document.write( "--------- \n" ); document.write( "3x^2 + bx.....+10 \n" ); document.write( "3(x^2 + (b/3)x + (b/6)^2) + [10 - 3(b/6)^2] \n" ); document.write( "----- \n" ); document.write( "n must be a integer: \n" ); document.write( "So, 10-(3(b^2/36)) = 10-(b^2/12) \n" ); document.write( "---- \n" ); document.write( " b^2 must be a multiple of 12 \n" ); document.write( "---- \n" ); document.write( " etc. \n" ); document.write( "--- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "-------------- \n" ); document.write( " |