document.write( "Question 1029267: If the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b? \n" ); document.write( "
Algebra.Com's Answer #644330 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
If the quadratic 3x^2+bx+10 can be written in the form a(x+m)^2+n, where m and n are integers, what is the largest integer that must be a divisor of b?
\n" ); document.write( "---------
\n" ); document.write( "3x^2 + bx.....+10
\n" ); document.write( "3(x^2 + (b/3)x + (b/6)^2) + [10 - 3(b/6)^2]
\n" ); document.write( "-----
\n" ); document.write( "n must be a integer:
\n" ); document.write( "So, 10-(3(b^2/36)) = 10-(b^2/12)
\n" ); document.write( "----
\n" ); document.write( " b^2 must be a multiple of 12
\n" ); document.write( "----
\n" ); document.write( " etc.
\n" ); document.write( "---
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "--------------
\n" ); document.write( "
\n" );