document.write( "Question 1028849: Find the x-coordinate of any holes for the following function.\r
\n" );
document.write( "\n" );
document.write( "g(x)= x^2-4
\n" );
document.write( " -------
\n" );
document.write( " x^2+x-20\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "A. 2
\n" );
document.write( "B. -2
\n" );
document.write( "C. 5
\n" );
document.write( "D. 1
\n" );
document.write( "E. None of the above \n" );
document.write( "
Algebra.Com's Answer #643900 by jim_thompson5910(35256) ![]() You can put this solution on YOUR website! x^2-4 factors to (x-2)(x+2) \n" ); document.write( "x^2+x-20 factors to (x-4)(x+5)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice how there are no common factors shared between the numerator and denominator. So we cannot cancel any factors out.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "No factors are canceled out which means there are no holes. Instead there are 2 vertical asymptotes (x = 4 and x = -5)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Final answer: E. None of the above. There are no holes and instead 2 asymptotes. \n" ); document.write( " |