Algebra.Com's Answer #64154 by jim_thompson5910(35256)  You can put this solution on YOUR website! \n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Completing the Square to Get a Quadratic into Vertex Form | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Start with the given equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Add to both sides \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factor out the leading coefficient  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Take half of the x coefficient to get (ie ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now square to get (ie ) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add and subtract this value inside the parenthesis. Doing both the addition and subtraction of does not change the equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now factor to get  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Distribute \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add to both sides to isolate y \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Combine like terms \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now the quadratic is in vertex form where , , and . Remember (h,k) is the vertex and \"a\" is the stretch/compression factor. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Check: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the original equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the final equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is also ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So if these two equations were graphed on the same coordinate plane, one would overlap another perfectly. So this visually verifies our answer. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Since we know the vertex is ( , ) or (1.5,-0.75), this is one point on the graph. \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Now lets pick any point after . Lets evaluate \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Start with the given polynomial\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Plug in \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Raise 2 to the second power to get 4\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Multiply 3 by 2 to get 6\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Now combine like terms\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So we get the point (2,-1)\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Lets pick another value \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Start with the given polynomial\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Plug in \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Raise 3 to the second power to get 9\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Multiply 3 by 3 to get 9\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Now combine like terms\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So another point is (3,-3)\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Now since the graph is symmetrical with respect to the axis of symmetry, this means x-values on the other side of the vertex will have the same y-values as their respective counterparts. For instance, the counterpart to is and the counterpart to is (notice they are the same distance away from the vertex along the x-axis)\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So here's the table of suitable values\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " x | y | \r\n" );
document.write( " 0 | -3 | \r\n" );
document.write( " 1 | -1 | \r\n" );
document.write( " 1.5 | -0.75 | \r\n" );
document.write( " 2 | -1 | \r\n" );
document.write( " 3 | -3 | \r\n" );
document.write( " \r\n" );
document.write( "\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Notice if we graph the equation and the table of points we get\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Since the points lie on the curve, this verifies our answer. \n" );
document.write( " |