document.write( "Question 1023816: Solve the system by elimination.
\n" );
document.write( "4x+4y+z=24
\n" );
document.write( "2x-4y+z=0
\n" );
document.write( "5x-4y-5z=12 \n" );
document.write( "
Algebra.Com's Answer #639321 by ikleyn(52873) You can put this solution on YOUR website! . \n" ); document.write( "Solve the system by elimination. \n" ); document.write( "4x+4y+z=24 \n" ); document.write( "2x-4y+z=0 \n" ); document.write( "5x-4y-5z=12 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "4x + 4y + z = 24, (1)\r\n" ); document.write( "2x - 4y + z = 0, (2)\r\n" ); document.write( "5x - 4y - 5z = 12. (3)\r\n" ); document.write( "\r\n" ); document.write( "First, distract (1) from (2). Second, multiply (1) by 5 (both sides) and then add to (3). \r\n" ); document.write( "In this way you eliminate z and obtain the system for two unknowns x and y:\r\n" ); document.write( "\r\n" ); document.write( "-2x - 8y = -24, (4)\r\n" ); document.write( "25x + 16y = 132. (5).\r\n" ); document.write( "\r\n" ); document.write( "By continuing with the elimination method, multiply (4) by 2 (both sides) and then add to (5). You will get \r\n" ); document.write( "\r\n" ); document.write( "21x = 132 - 48 = 84.\r\n" ); document.write( "\r\n" ); document.write( "Hence, x =\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |