document.write( "Question 1023758: Given triangle ABC with coordinates A(3, 4), B(4, -3), and C(-4, -1) determine the equation of the line of the median from vertex A. \n" );
document.write( "
Algebra.Com's Answer #639286 by Edwin McCravy(20056)  You can put this solution on YOUR website! \r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "The median (the green line) connects the vertex\r\n" );
document.write( "A(3,4) to the midpoint of the opposite side CB. \r\n" );
document.write( "\r\n" );
document.write( "We find the midpoint of CB using the midpoint\r\n" );
document.write( "formula:\r\n" );
document.write( "\r\n" );
document.write( "Midpoint = \r\n" );
document.write( "\r\n" );
document.write( "Midpoint = \r\n" );
document.write( "\r\n" );
document.write( "Midpoint = \r\n" );
document.write( "\r\n" );
document.write( "Midpoint = M(0,-2)\r\n" );
document.write( "\r\n" );
document.write( "We find the equation of median AM.\r\n" );
document.write( "\r\n" );
document.write( "We use the slope formula:\r\n" );
document.write( "\r\n" );
document.write( "m = \r\n" );
document.write( "\r\n" );
document.write( "where (x1,y1) = A(3,4)\r\n" );
document.write( "\r\n" );
document.write( "and where (x2,y2) = M(0,-2)\r\n" );
document.write( "\r\n" );
document.write( "m = \r\n" );
document.write( "\r\n" );
document.write( "m = \r\n" );
document.write( "\r\n" );
document.write( "m = 2\r\n" );
document.write( "\r\n" );
document.write( "Point-slope formula:\r\n" );
document.write( "\r\n" );
document.write( "y - y1 = m(x - x1)\r\n" );
document.write( "\r\n" );
document.write( "where m=2 and (x1,y1) = (3,4)\r\n" );
document.write( "\r\n" );
document.write( "y - 4 = 2(x - 3)\r\n" );
document.write( "\r\n" );
document.write( "y - 4 = 2x - 6\r\n" );
document.write( "\r\n" );
document.write( " y = 2x - 2\r\n" );
document.write( "\r\n" );
document.write( "Edwin \n" );
document.write( " |
\n" );