document.write( "Question 1023098: Cannot determine the common ratio for:\r
\n" ); document.write( "\n" ); document.write( "Sequence: 4,-9, 16, -25,...\r
\n" ); document.write( "\n" ); document.write( "Series: 1 - 1/4 + 1/9 - 1/25 + ...\r
\n" ); document.write( "\n" ); document.write( "Must create a general term for both, and prove the convergence of the second using the alternating series test.
\n" ); document.write( "

Algebra.Com's Answer #638616 by ikleyn(52788)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Cannot determine the common ratio for:\r
\n" ); document.write( "\n" ); document.write( "Sequence: 4,-9, 16, -25,...\r
\n" ); document.write( "\n" ); document.write( "Series: 1 - 1/4 + 1/9 - 1/25 + ...\r
\n" ); document.write( "\n" ); document.write( "Must create a general term for both, and prove the convergence of the second using the alternating series test.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~``\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "1. I can not also.\r\n" );
document.write( "\r\n" );
document.write( "  They are not Geometric progression. Neither first, nor the second.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "2. The general term for the first sequence is \"%28-1%29%5E%28n%2B1%29%2A%28n%2B1%29%5E2\", n = 1, 2, 3 . . . \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "3. The alternating series test says: if \"a%5Bn%5D\" decreases monotonically and  \"lim\" \"a%5Bn%5D\" = \"0\" when n --> \"infinity\", \r\n" );
document.write( "   then the alternating series converges.\r\n" );
document.write( "\r\n" );
document.write( "   For your series the condition is valid, so the conclusion is valid too.\r\n" );
document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );