document.write( "Question 1022762: Find an equation of the tangent line to the graph of the function at the given point. y = 8x arccos(x − 1) point (1,4π)\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #638403 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! Here's a similar problem with the solution. \n" ); document.write( "------------ \n" ); document.write( "Find an equation of the tangent line to the graph of the equation at the given point. x^2 + x arctan y = y − 1, (-π/4,1) \n" ); document.write( "=====================================\r \n" ); document.write( "\n" ); document.write( "x^2 + x*atan(y) = y − 1 \n" ); document.write( "---- \n" ); document.write( "Differentiate implicitly \n" ); document.write( "2xdx + dx*atan(y) + (x*1/(1 + y^2))dy = dy \n" ); document.write( "(2x + atan(y))dx = (1 - (x/(1 + y^2))dy = (1 + y^2 - x)*dy/(1 + y^2) \n" ); document.write( "dy/dx = (2x + atan(y))*(1 + y^2)/(1 + y^2 - x) \n" ); document.write( "------ \n" ); document.write( "@ (-pi/4,1): = (-pi/2 + pi/4)*(1 + 1)/(1 + 1 + pi/4) \n" ); document.write( "slope = (-pi/2)/(pi/4 + 2) \n" ); document.write( "---- \n" ); document.write( "y - 1 = ((-pi/2)/(pi/4 + 2))*(x + pi/4) \n" ); document.write( " |