document.write( "Question 1018762: What is the angle of rotation of this regular octagon? What is the measure of an interior angle?\r
\n" );
document.write( "\n" );
document.write( "A.
\n" );
document.write( "45°, 135°
\n" );
document.write( "B.
\n" );
document.write( "22.5°, 135°
\n" );
document.write( "C.
\n" );
document.write( "45°, 108°
\n" );
document.write( "D.
\n" );
document.write( "22.5°, 108°
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #634792 by Theo(13342)![]() ![]() You can put this solution on YOUR website! octagon interior angle can be calculated as 180 * (n-2) / n.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "n = 8.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "interior angle = 180 * 6 / 8 = 180 * 3 / 4 = 45 * 3 = 135 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the internal angle is the supplement of the exterior angle.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the extreior angle is equal to 360 / 8 = 45 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "180 - 45 = 135 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the angle of rotation is the smallest angle the figure can be rotated and still look the same.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this appears to be 45 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in fact, it appears that the angle of rotation is the central angle of a regular polygon.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the formula is equal to 360 / n, where n is the number of sides.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "here's a reference that discusses exactly the topic you are asking about.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "if even shows an octagon as one of the examples.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "http://www.emathematics.net/transformations.php?def=rotational\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this, in fact, is also the formula for the exterior angle of a polygon.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "interior angle = 180 * (n-2) / n\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "interior angle = 180 - exterior angle.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "exterior angle = 360 / n\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "central angle = 360 / n\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "it appears that angle of rotation is also equal to 360 / n as well.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your solution should be selection A.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |