document.write( "Question 1018501: How on earth do you prove that:
\n" );
document.write( "|x|=|-x|\r
\n" );
document.write( "\n" );
document.write( "And\r
\n" );
document.write( "\n" );
document.write( "|x|≥0\r
\n" );
document.write( "\n" );
document.write( "Just seems so hard to prove it? \n" );
document.write( "
Algebra.Com's Answer #634589 by ikleyn(52803)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "How on earth do you prove that: \n" ); document.write( "|x|=|-x| \n" ); document.write( "-----------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. Let x be a non-negative real number: x >= 0.\r\n" ); document.write( "\r\n" ); document.write( " Then |x| = x.\r\n" ); document.write( "\r\n" ); document.write( " Also then -x is negative number, and |-x| = -(-x) by the definition of the modulus. So, |-x| = -(-x) = x.\r\n" ); document.write( "\r\n" ); document.write( " Thus we proved that if x >= 0, then |x| = |-x|.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "2. Now consider the case, when x is negative real number: x < 0.\r\n" ); document.write( "\r\n" ); document.write( " Then |x| = -x by the definition of the modulus.\r\n" ); document.write( "\r\n" ); document.write( " Also then -x is positive number, and hence |-x| = -x.\r\n" ); document.write( "\r\n" ); document.write( " Thus we proved that if x < 0, then |x| = |-x|.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus we proved that in all cases |x| = |-x|.\r\n" ); document.write( "\r\n" ); document.write( "QED.\r\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |