document.write( "Question 1017094: Find k so that the minimum value of f(x) =x^2 +kx+8 is equal to the maximum value of g(x) = 1 +4x-2x^2. \n" ); document.write( "
Algebra.Com's Answer #633451 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
Find k so that the minimum value of f(x) =x^2 +kx+8 is equal to the maximum value of g(x) = 1 +4x-2x^2.
\n" ); document.write( "------------------
\n" ); document.write( "Note:: Max or Min occurs at -b(2a)
\n" ); document.write( "---------------------------------------
\n" ); document.write( "min of f(x) at (-k/2,f(-k/2))
\n" ); document.write( "max of g(x) at (-4/-4,g(1))
\n" ); document.write( "--------------
\n" ); document.write( "Solve::
\n" ); document.write( "f(-k/2) = g(1)
\n" ); document.write( "(-k/2)^2 + k(-k/2) + 8 = 1 + 4 - 2
\n" ); document.write( "------
\n" ); document.write( "k^2/4 - k^2/2 + 5 = 0
\n" ); document.write( "k^2 - 2k^2 + 20 = 0
\n" ); document.write( "k^2 = 20
\n" ); document.write( "k = 2sqrt(5)
\n" ); document.write( "-----------------
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "-------------
\n" ); document.write( "
\n" );