document.write( "Question 1017094: Find k so that the minimum value of f(x) =x^2 +kx+8 is equal to the maximum value of g(x) = 1 +4x-2x^2. \n" ); document.write( "
Algebra.Com's Answer #633451 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Find k so that the minimum value of f(x) =x^2 +kx+8 is equal to the maximum value of g(x) = 1 +4x-2x^2. \n" ); document.write( "------------------ \n" ); document.write( "Note:: Max or Min occurs at -b(2a) \n" ); document.write( "--------------------------------------- \n" ); document.write( "min of f(x) at (-k/2,f(-k/2)) \n" ); document.write( "max of g(x) at (-4/-4,g(1)) \n" ); document.write( "-------------- \n" ); document.write( "Solve:: \n" ); document.write( "f(-k/2) = g(1) \n" ); document.write( "(-k/2)^2 + k(-k/2) + 8 = 1 + 4 - 2 \n" ); document.write( "------ \n" ); document.write( "k^2/4 - k^2/2 + 5 = 0 \n" ); document.write( "k^2 - 2k^2 + 20 = 0 \n" ); document.write( "k^2 = 20 \n" ); document.write( "k = 2sqrt(5) \n" ); document.write( "----------------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "------------- \n" ); document.write( " |