document.write( "Question 1016891: prove that log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6))=2 \n" ); document.write( "
Algebra.Com's Answer #633238 by mathmate(429)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Question:
\n" ); document.write( "prove that
\n" ); document.write( "log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6))=2
\n" ); document.write( "
\n" ); document.write( "Solution:
\n" ); document.write( "
\n" ); document.write( "We used the symbol E to stand for the value of the left-hand side, or
\n" ); document.write( "E=log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6))
\n" ); document.write( "
\n" ); document.write( "We need to use some laws of logarithm:
\n" ); document.write( "log(a)+log(b)=log(ab)
\n" ); document.write( "log(a)-log(b)=log(a/b)
\n" ); document.write( "(1/2)log(a)=log(sqrt(a))
\n" ); document.write( "
\n" ); document.write( "Also, note that log(x) implies log(x) to the base 10.
\n" ); document.write( "
\n" ); document.write( "The idea of solution is to break up each term and simplify.
\n" ); document.write( "We have:
\n" ); document.write( "
\n" ); document.write( "log15(1+(log30)/(log15))=log(15)+log(30)=log(450).........(1)
\n" ); document.write( "
\n" ); document.write( "1/2(log16(1+(log7)/(log4)))=log(sqrt(16))(1+log(7)/log(4))
\n" ); document.write( "=log(4)(1+log(7)/log(4))
\n" ); document.write( "=log(4)+log(7)
\n" ); document.write( "=log(28).................................................(2)
\n" ); document.write( "
\n" ); document.write( "-log6((log3)/(log6)+1+(log7)/(log6))
\n" ); document.write( "=-(log(3)+log(6)+log(7)
\n" ); document.write( "=-(log(3*6*7))
\n" ); document.write( "=-log(126)...............................................(3)
\n" ); document.write( "
\n" ); document.write( "Putting the three terms together we have:
\n" ); document.write( "
\n" ); document.write( "E=E=log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6))
\n" ); document.write( "=log(450)+log(28)-log(126)
\n" ); document.write( "=log(450*28/126)
\n" ); document.write( "=log(100)
\n" ); document.write( "=log(10^2)
\n" ); document.write( "=2 which is exactly the value of the right hand side, so proved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );