document.write( "Question 1016891: prove that log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6))=2 \n" ); document.write( "
Algebra.Com's Answer #633238 by mathmate(429)![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Question: \n" ); document.write( "prove that \n" ); document.write( "log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6))=2 \n" ); document.write( " \n" ); document.write( "Solution: \n" ); document.write( " \n" ); document.write( "We used the symbol E to stand for the value of the left-hand side, or \n" ); document.write( "E=log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6)) \n" ); document.write( " \n" ); document.write( "We need to use some laws of logarithm: \n" ); document.write( "log(a)+log(b)=log(ab) \n" ); document.write( "log(a)-log(b)=log(a/b) \n" ); document.write( "(1/2)log(a)=log(sqrt(a)) \n" ); document.write( " \n" ); document.write( "Also, note that log(x) implies log(x) to the base 10. \n" ); document.write( " \n" ); document.write( "The idea of solution is to break up each term and simplify. \n" ); document.write( "We have: \n" ); document.write( " \n" ); document.write( "log15(1+(log30)/(log15))=log(15)+log(30)=log(450).........(1) \n" ); document.write( " \n" ); document.write( "1/2(log16(1+(log7)/(log4)))=log(sqrt(16))(1+log(7)/log(4)) \n" ); document.write( "=log(4)(1+log(7)/log(4)) \n" ); document.write( "=log(4)+log(7) \n" ); document.write( "=log(28).................................................(2) \n" ); document.write( " \n" ); document.write( "-log6((log3)/(log6)+1+(log7)/(log6)) \n" ); document.write( "=-(log(3)+log(6)+log(7) \n" ); document.write( "=-(log(3*6*7)) \n" ); document.write( "=-log(126)...............................................(3) \n" ); document.write( " \n" ); document.write( "Putting the three terms together we have: \n" ); document.write( " \n" ); document.write( "E=E=log15(1+(log30)/(log15))+1/2(log16(1+(log7)/(log4)))-log6((log3)/(log6)+1+(log7)/(log6)) \n" ); document.write( "=log(450)+log(28)-log(126) \n" ); document.write( "=log(450*28/126) \n" ); document.write( "=log(100) \n" ); document.write( "=log(10^2) \n" ); document.write( "=2 which is exactly the value of the right hand side, so proved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |