document.write( "Question 1016005: If one interior angle of a regular polygon of n sides is 42 degrees more than an exterior angle of a regular polygon with 20 sides, then n equals \r
\n" );
document.write( "\n" );
document.write( "a) 3
\n" );
document.write( "b) 5
\n" );
document.write( "c) 6
\n" );
document.write( "d) 8
\n" );
document.write( "e) 10\r
\n" );
document.write( "\n" );
document.write( "Show your work \n" );
document.write( "
Algebra.Com's Answer #632582 by macston(5194)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Each exterior angle of a polygon with 20 sides \n" ); document.write( "measures (360/20)=18 degrees. The sum of exterior \n" ); document.write( "angles of all polygons is 360 degrees. \n" ); document.write( ". \n" ); document.write( "Interior angle of other polygon = 18 + 42 = 60 degrees \n" ); document.write( ". \n" ); document.write( "(n-2)/n(180)=60 \n" ); document.write( "(n-2)(180)=60n \n" ); document.write( "180n-360=60n \n" ); document.write( "120n-360=0 \n" ); document.write( "120n=360 \n" ); document.write( "n=3 \n" ); document.write( ". \n" ); document.write( "ANSWER: A is correct, n=3 \n" ); document.write( " |