document.write( "Question 1015740: The \"perpendicular bisector\" of the line segment line AB is the line that passes through the midpoint of line AB and is perpendicular to line AB.\r
\n" );
document.write( "\n" );
document.write( "The equation of the perpendicular bisector of the line segment joining the points (1,2) and (-5,12) is y = mx + b. Find m+b. \n" );
document.write( "
Algebra.Com's Answer #632135 by macston(5194) You can put this solution on YOUR website! . \n" ); document.write( "For the segment: \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( "Slope=m= \n" ); document.write( ". \n" ); document.write( "midpoint=( \n" ); document.write( ". \n" ); document.write( "midpoint=( \n" ); document.write( ". \n" ); document.write( "midpoint=( \n" ); document.write( ". \n" ); document.write( "midpoint=(-2,7) \n" ); document.write( ". \n" ); document.write( "For perpendicular bisector: \n" ); document.write( "slope=m=3/5 (negative reciprocal of slope of original segment) \n" ); document.write( ". \n" ); document.write( "To find b, replace x and y with midpoint values: \n" ); document.write( "x=-2; y=7 \n" ); document.write( ". \n" ); document.write( "y=3/5x+b \n" ); document.write( ". \n" ); document.write( "7=(3/5)(-2)+b \n" ); document.write( ". \n" ); document.write( "7=(-6/5)+b \n" ); document.write( ". \n" ); document.write( "35/5+6/5=b \n" ); document.write( ". \n" ); document.write( "41/5=b \n" ); document.write( ". \n" ); document.write( "ANSWER: m=3/5; b=41/5 \n" ); document.write( ". \n" ); document.write( " \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |