document.write( "Question 87220: Determine, approximately using a graph, the intervals on which the function
\n" );
document.write( "f(x)=x^3 + 3x^2-7x-1 is increasing and decreasing. \n" );
document.write( "
Algebra.Com's Answer #63164 by Nate(3500)![]() ![]() ![]() You can put this solution on YOUR website! f(x) = x^3 + 3x^2 - 7x - 1 \n" ); document.write( "A function will change from decreasing to increasing or vise versa after hitting a peak or a valley (a minima or maxima). \n" ); document.write( " \n" ); document.write( "Approx. at -3 and 1 the function changes signs. \n" ); document.write( "Exact: \n" ); document.write( "f(x) = x^3 + 3x^2 - 7x - 1 \n" ); document.write( "f'(x) = 3x^2 + 6x - 7 \n" ); document.write( "0 = 3x^2 + 6x - 7 \n" ); document.write( "7 = 3x^2 + 6x \n" ); document.write( "7/3 = x^2 + 2x \n" ); document.write( "10/3 = (x + 1)^2 \n" ); document.write( "-1 +- sqrt(10/3) = x \n" ); document.write( "When: x < -1 - sqrt(10/3) .. the function is increasing \n" ); document.write( "When: -1 - sqrt(10/3) < x < -1 + sqrt(10/3) .. the function is decreasing \n" ); document.write( "When: -1 + sqrt(10/3) < x .. the function is increasing again \n" ); document.write( " |