document.write( "Question 1014707: If A+B+C=π then establish the given relation
\n" ); document.write( "(sin2A+sin2B+sin2C)/(4cosA/2 cosB/2 cosC/2)=8 sinA/2.sinB/2.sinC/2
\n" ); document.write( "

Algebra.Com's Answer #631219 by robertb(5830)\"\" \"About 
You can put this solution on YOUR website!
Prove first that\r
\n" ); document.write( "\n" ); document.write( "sin2A + sin2B + sin2C = 4sinA*sinB*sinC. \r
\n" ); document.write( "\n" ); document.write( "sin2A + sin2B + sin2C
\n" ); document.write( "=\"sin2A+%2B+sin2B+%2B+sin%282%2Api-2%28A%2BB%29%29\"
\n" ); document.write( "=\"sin2A+%2B+sin2B+-+sin2%28A%2BB%29\"
\n" ); document.write( "=\"sin2A+%2B+sin2B+-+sin%282A%2B2B%29\"
\n" ); document.write( "=\"sin2A+%2B+sin2B+-+sin2A%2Acos2B+-+cos2A%2Asin2B\"
\n" ); document.write( "= sin2A(1 - cos2B) + sin2B(1 - cos2A)
\n" ); document.write( "=\"2sin2A%2A%28sinB%29%5E2+%2B+2sin2B%2A%28sinA%29%5E2\"
\n" ); document.write( "=\"4sinA%2AcosB%2A%28sinB%29%5E2+%2B+4sinB%2AcosB%2A%28sinA%29%5E2\"
\n" ); document.write( "=4sinAsinB(cosAsinB+sinAcosB)
\n" ); document.write( "=4sinAsinBsin(A+B)
\n" ); document.write( "=\"4sinAsinBsin%28pi-C%29\"
\n" ); document.write( "=4sinAsinBsinC\r
\n" ); document.write( "\n" ); document.write( "Since \"%284sinA%2AsinB%2AsinC%29%2F%284cos%28A%2F2%29%2Acos%28B%2F2%29%2Acos%28C%2F2%29%29\"
\n" ); document.write( "=,
\n" ); document.write( "the main result follows.
\n" ); document.write( "
\n" );