document.write( "Question 1014154: The diagonals of a parallelogram JKLM intersect at P. If PM=3x-2, PK=x+3, and PJ=4x-3, find the length of PL \n" ); document.write( "
Algebra.Com's Answer #630517 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "The diagonals of a parallelogram JKLM intersect at P. If PM=3x-2, PK=x+3, and PJ=4x-3, find the length of PL \n" ); document.write( "---------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Since the diagonals of a parallelogram bisect each other at the intersection point, we have an equation\r\n" ); document.write( "\r\n" ); document.write( "|PM| = |PK| (these segments are halves of the diagonal KM).\r\n" ); document.write( "\r\n" ); document.write( "It gives\r\n" ); document.write( "\r\n" ); document.write( "3x - 2 = x + 3 ---> 2x = 5, x = 2.5 units of length.\r\n" ); document.write( "\r\n" ); document.write( "Due to the same reason, \r\n" ); document.write( "\r\n" ); document.write( "|PL| = |PJ| (these segments are halves of the diagonal LJ).\r\n" ); document.write( "\r\n" ); document.write( "Hence, |PL| = |PJ| = 4x - 3 = 4*2.5 - 3 = 10 - 3 = 7.\r\n" ); document.write( "\r\n" ); document.write( "Answer. The length of PL is 7 units.\r\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |