Algebra.Com's Answer #63049 by jim_thompson5910(35256)  You can put this solution on YOUR website! \n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Solve the System of Equations by Graphing | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Start with the given system of equations: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " In order to graph these equations, we need to solve for y for each equation. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So let's solve for y on the first equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Start with the given equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Subtract from both sides \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Rearrange the equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Divide both sides by  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Break up the fraction \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Reduce \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now lets graph (note: if you need help with graphing, check out this solver) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So let's solve for y on the second equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Start with the given equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Subtract from both sides \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Rearrange the equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Divide both sides by  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Break up the fraction \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Reduce \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now lets add the graph of to our first plot to get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of (red) and (green) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " From the graph, we can see that the two lines are identical (one lies perfectly on top of the other) and intersect at all points of both lines. So there are an infinite number of solutions and the system is dependent. | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "1. \n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Solving a System of Linear Equations by Elimination/Addition | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Lets start with the given system of linear equations \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " In order to solve for one variable, we must eliminate the other variable. So if we wanted to solve for y, we would have to eliminate x (or vice versa). \n" );
document.write( " \n" );
document.write( " So lets eliminate x. In order to do that, we need to have both x coefficients that are equal but have opposite signs (for instance 2 and -2 are equal but have opposite signs). This way they will add to zero. \n" );
document.write( " \n" );
document.write( " So to make the x coefficients equal but opposite, we need to multiply both x coefficients by some number to get them to an equal number. So if we wanted to get 2 and 5 to some equal number, we could try to get them to the LCM. \n" );
document.write( " \n" );
document.write( " Since the LCM of 2 and 5 is 10, we need to multiply both sides of the top equation by 5 and multiply both sides of the bottom equation by -2 like this: \n" );
document.write( " \n" );
document.write( " Multiply the top equation (both sides) by 5 \n" );
document.write( " Multiply the bottom equation (both sides) by -2 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So after multiplying we get this: \n" );
document.write( "  \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " Notice how 10 and -10 add to zero (ie ) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add the equations together. In order to add 2 equations, group like terms and combine them \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " Notice the x coefficients add to zero and cancel out. This means we've eliminated x altogether. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So after adding and canceling out the x terms we're left with: \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " Divide both sides by to solve for y \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Reduce \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now plug this answer into the top equation to solve for x \n" );
document.write( " \n" );
document.write( " Plug in  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Subtract from both sides \n" );
document.write( " \n" );
document.write( " Combine the terms on the right side \n" );
document.write( " \n" );
document.write( " Multiply both sides by . This will cancel out on the left side. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply the terms on the right side \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So our answer is \n" );
document.write( " \n" );
document.write( " ,  \n" );
document.write( " \n" );
document.write( " which also looks like \n" );
document.write( " \n" );
document.write( " ( , ) \n" );
document.write( " \n" );
document.write( " Notice if we graph the equations (if you need help with graphing, check out this solver) \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " we get \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " graph of (red) (green) (hint: you may have to solve for y to graph these) and the intersection of the lines (blue circle). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " and we can see that the two equations intersect at ( , ). This verifies our answer. | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "2. \n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Solving a System of Linear Equations by Elimination/Addition | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Lets start with the given system of linear equations \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " In order to solve for one variable, we must eliminate the other variable. So if we wanted to solve for y, we would have to eliminate x (or vice versa). \n" );
document.write( " \n" );
document.write( " So lets eliminate x. In order to do that, we need to have both x coefficients that are equal but have opposite signs (for instance 2 and -2 are equal but have opposite signs). This way they will add to zero. \n" );
document.write( " \n" );
document.write( " So to make the x coefficients equal but opposite, we need to multiply both x coefficients by some number to get them to an equal number. So if we wanted to get 1 and -2 to some equal number, we could try to get them to the LCM. \n" );
document.write( " \n" );
document.write( " Since the LCM of 1 and -2 is -2, we need to multiply both sides of the top equation by -2 and multiply both sides of the bottom equation by -1 like this: \n" );
document.write( " \n" );
document.write( " Multiply the top equation (both sides) by -2 \n" );
document.write( " Multiply the bottom equation (both sides) by -1 \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So after multiplying we get this: \n" );
document.write( "  \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " Notice how -2 and 2 add to zero, -10 and 10 add to zero, -20 and 20 and to zero (ie ) , and ) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So we're left with \n" );
document.write( " \n" );
document.write( "  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " which means any x or y value will satisfy the system of equations. So there are an infinite number of solutions \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So this system is dependent | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " |