document.write( "Question 1013692: Triangle ABC is a 30˚ −60˚ −90˚ triangle with vertices A(2, 5) and B(2, −5). If m ∠B = 30˚ and ∠C is a right angle, what is the y-coordinate of C? \n" ); document.write( "
Algebra.Com's Answer #629993 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! This needs to be drawn: \n" ); document.write( "A \n" ); document.write( ";;;;;;;;;;C \n" ); document.write( "; \n" ); document.write( "; \n" ); document.write( "; \n" ); document.write( "B \n" ); document.write( "AC is 1/2 of AB in a 30-60-90 triangle. \n" ); document.write( "AC is 5 units long. \n" ); document.write( "Furthermore, slope of AC is negative reciprocal of BC. \n" ); document.write( "Let C=(x,y) \n" ); document.write( "slope of AC is (y-5)/(x-2) \n" ); document.write( "slope of BC is (y+5)/(x-2) \n" ); document.write( "Their product is -1 \n" ); document.write( "(y^2-25)/(x-2)^2 = -1 \n" ); document.write( "y^2-25=-x^2+4x-4 \n" ); document.write( "y^2=-x^2+4x+21 \n" ); document.write( "AC distance =5 \n" ); document.write( "square that to 25, and that equals (y-5)^2+(x-2)^2 (distance formula) \n" ); document.write( "y^2-10y+25+x^2-4x+4=25 \n" ); document.write( "y^2-10y+x^2-4x-4=0 \n" ); document.write( "But y^2=-x^2+4x+21 \n" ); document.write( "-x^2+4x+21-10y+x^2-4x+4=0; the x^2 and the 4x cancel. \n" ); document.write( "-10y+25=0 \n" ); document.write( "-10y=-25 \n" ); document.write( "y=2.5 THE Y-COORDINATE OF C. \n" ); document.write( "25=(y-5)^2+(x-2)^2 \n" ); document.write( "25=6.25+(x-2)^2 \n" ); document.write( "18.75=(x-2)^2 \n" ); document.write( "x-2=4.33 \n" ); document.write( "x=6.33\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |