document.write( "Question 1012940: find the value of n if the sum of n terms of the series 11 + 33 + 99 + ... is equal to 108 251. \n" ); document.write( "
Algebra.Com's Answer #629076 by ikleyn(52797)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "find the value of n if the sum of n terms of the series 11 + 33 + 99 + ... is equal to 108 251.
\n" ); document.write( "----------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "This progression is geometric with the first term 11 and the common ratio of 3.\r\n" );
document.write( "\r\n" );
document.write( "Use the formula for the sum of the first n terms of a geometric progression:\r\n" );
document.write( "\r\n" );
document.write( "\"S%5Bn%5D\" = \"a%2A%28%28q%5En+-+1%29%2F%28q-1%29%29\". \r\n" );
document.write( "\r\n" );
document.write( "(see the lesson Geometric progressions in this site).\r\n" );
document.write( "\r\n" );
document.write( "Substitute here a = 11 and q = 3. You will get an equation\r\n" );
document.write( "\r\n" );
document.write( "\"11%2A%28%283%5En+-+1%29%2F%283-1%29%29\" = \"108251\",   or\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\"%283%5En+-+1%29%2F2\" = \"108251%2F11\" = 9841,\r\n" );
document.write( "\r\n" );
document.write( "\"3%5En\" = 2*9841 + 1 = 19683 = 3^9.\r\n" );
document.write( "\r\n" );
document.write( "Hence, n = 9.\r\n" );
document.write( "\r\n" );
document.write( "Answer. n = 9.\r\n" );
document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );