document.write( "Question 1012558: 3.26\r
\n" ); document.write( "\n" ); document.write( "For the function f(x)=4x-5 determine whether f(x) is one-to-one. If so, find a formula for the inverse,
\n" ); document.write( "give the domain and range for f^-1 , and then graph both functions on the same axes.\r
\n" ); document.write( "\n" ); document.write( "1. Is f(x) a one-to-one function? Yes or No\r
\n" ); document.write( "\n" ); document.write( "2. The inverse function is f^-1 =\r
\n" ); document.write( "\n" ); document.write( "3. What is the correct range?\r
\n" ); document.write( "\n" ); document.write( "4.Graph for f and f^-1A:
\n" ); document.write( "

Algebra.Com's Answer #628548 by Theo(13342)\"\" \"About 
You can put this solution on YOUR website!
For the function f(x)=4x-5 determine whether f(x) is one-to-one. If so, find a formula for the inverse,
\n" ); document.write( "give the domain and range for f^-1 , and then graph both functions on the same axes.
\n" ); document.write( "1. Is f(x) a one-to-one function? Yes or No\r
\n" ); document.write( "\n" ); document.write( "yes - it's an equation for a straight line which is always 1 to 1.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2. The inverse function is f^-1 =\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "set f(x) = y and the function becomes y = 4x-5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the inverse function is x = 4y - 5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "it is found by replacing y with x and x with y.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "you can solve this function for y in the following manner:
\n" ); document.write( "start with x = 4y - 5
\n" ); document.write( "subtract x from both sides of the equation and subtract 4y from both sides of the equation to get -4y = -x - 5
\n" ); document.write( "divide both sides of the equation by -4 to get y = x/4 + 5/4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = 4y - 5 and y = x/4 + 5/4 are identical equations.
\n" ); document.write( "they are both inverse equations of y = 4x - 5.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3. What is the correct range?\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the domain of the original function is all real values of x.
\n" ); document.write( "the range of the original function is all real values of y.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the domain of the inverse equation is the same as the range of the original function.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the range of the inverse equation is the same as the domain of the original function.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "4.Graph for f and f^-1A: \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "graph is shown below:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the original equation is red.
\n" ); document.write( "the inverse equation is blue.
\n" ); document.write( "both x = 4y-5 and y = 4x+5/4 are blue.
\n" ); document.write( "since these equations are identical, they show up as the same line on the graph.
\n" ); document.write( "the dashed line of y = x is also shown.
\n" ); document.write( "since the equations are inverses of each other, they are symmetric about the line y = x.\r
\n" ); document.write( "\n" ); document.write( "\"$$$\"
\n" ); document.write( "
\n" );