document.write( "Question 1012250: Please help me solve this :\r
\n" );
document.write( "\n" );
document.write( "In an arithmetic progression a3=5 and a5=11 \r
\n" );
document.write( "\n" );
document.write( "Calculate the sum of 100 terms . \n" );
document.write( "
Algebra.Com's Answer #628115 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! for an arithmetic progression, the nth term is given by \n" ); document.write( "An = A1 + d(n-1) where d is the common difference \n" ); document.write( "****************************************************** \n" ); document.write( "we have two equations in two unknowns \n" ); document.write( "1) A3 = 5 = A1 + d(3-1) \n" ); document.write( "A1 + 2d = 5 \n" ); document.write( "*************************************** \n" ); document.write( "2) A5 = 11 = A1 + d(5-1) \n" ); document.write( "A1 + 4d = 11 \n" ); document.write( "************************************** \n" ); document.write( "now subtract equation 1 from equation 2 and we get \n" ); document.write( "2d = 6 \n" ); document.write( "d = 3 \n" ); document.write( "use equation 1 to find A1 \n" ); document.write( "A1 + 3(2) = 5 \n" ); document.write( "A1 = -1 \n" ); document.write( "************************************* \n" ); document.write( "equation for the nth term is \n" ); document.write( "An = -1 + 3(n-1) \n" ); document.write( "We can check this by using equation 2 \n" ); document.write( "-1 + 3(5-1) = 11 \n" ); document.write( "-1 + 12 = 11 \n" ); document.write( "11 = 11 \n" ); document.write( "our equation checks out \n" ); document.write( "************************************* \n" ); document.write( "sum of the first n terms(Sn) = (n(A1 + An)) / 2 \n" ); document.write( "A1 = -1 \n" ); document.write( "A100 = -1 + 100(100-1) = 9899 \n" ); document.write( "S100 = (100(-1 + 9899)) / 2 = 494900\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |