document.write( "Question 1012114: In a regular polygon, the exterior angle is one-eighth of an interior angle. How many sides has the polygon? \n" ); document.write( "
Algebra.Com's Answer #628007 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "In a regular polygon, the exterior angle is one-eighth of an interior angle. How many sides has the polygon?
\n" ); document.write( "----------------------------------------------------------------------\r
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "First, let us find the interior angle.\r\n" );
document.write( "Let x be the exterior angle. Then the interior angle is 8x.\r\n" );
document.write( "\r\n" );
document.write( "Their sum is 180°. It gives you an equation\r\n" );
document.write( "\r\n" );
document.write( "x + 8x = 180,   or   9x = 180,   or x = \"180%2F9\" = 20°.\r\n" );
document.write( "\r\n" );
document.write( "Thus the interior angle \"alpha\" = \"8%2Ax\" = \"8%2A20\" = 160°.\r\n" );
document.write( "\r\n" );
document.write( "Now use the formula for the sum of interior angles of n-sided regular polygon.\r\n" );
document.write( "It gives you an equation to determine n:\r\n" );
document.write( "\r\n" );
document.write( "\"n%2Aalpha\" = \"180%2A%28n-2%29\",   or\r\n" );
document.write( "\r\n" );
document.write( "n*160 = 180*(n-2).\r\n" );
document.write( "\r\n" );
document.write( "Simplify and solve it:\r\n" );
document.write( "\r\n" );
document.write( "160n = 180n - 360  ----->   20n = 360  ----->   n = \"360%2F20\" = 18.\r\n" );
document.write( "\r\n" );
document.write( "Answer. n = 18.\r\n" );
document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );