document.write( "Question 1011381: Find all values of K such that equation 2^x-k(2^-x)=1 has exact one real solution \n" ); document.write( "
Algebra.Com's Answer #627029 by ikleyn(52790)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find all values of k such that equation 2^x-k(2^-x)=1 has \"highlight%28cross%28exact%29%29\" exactly one real solution.
\n" ); document.write( "------------------------------------------------------------------
\n" ); document.write( "
\r\n" );
document.write( "\"2%5Ex-k%2A2%5E%28-x%29\" = \"1\".      (1)\r\n" );
document.write( "\r\n" );
document.write( "Introduce new variable y = \"2%5Ex\". Then the equation takes the form\r\n" );
document.write( "\r\n" );
document.write( "y - k*\"%281%2Fy%29\" = \"1\".\r\n" );
document.write( "\r\n" );
document.write( "Multiply both sides by y. You will get\r\n" );
document.write( "\r\n" );
document.write( "\"y%5E2+-+k\" = \"y\",    or\r\n" );
document.write( "\r\n" );
document.write( "\"y%5E2+-+y+-+k\" = \"0\".         (2)\r\n" );
document.write( "\r\n" );
document.write( "The condition that this equation has only one root is vanishing the discriminant, i.e. \r\n" );
document.write( "\r\n" );
document.write( "d = 0,\r\n" );
document.write( "\r\n" );
document.write( "where d = \"sqrt%28b%5E2+-+4ac%29\" = \"sqrt%28%28-1%29%5E2+%2B+4k%29\" = \"sqrt%281+%2B+4k%29\".\r\n" );
document.write( "\r\n" );
document.write( "It means that 1 + 4k = 0,   or   k = \"-1%2F4\".\r\n" );
document.write( "\r\n" );
document.write( "Then the equation (2) become \r\n" );
document.write( "\r\n" );
document.write( "\"y%5E2+-+y+%2B+1%2F4\" = \"0\".         (3)\r\n" );
document.write( "\r\n" );
document.write( "The discriminant of this equation is zero due to selection of k. (You can check it).\r\n" );
document.write( "\r\n" );
document.write( "The unique root of this equation is y = \"1%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "Thus the equation (1) has the unique root if and only if k = \"-1%2F4\". \r\n" );
document.write( "\r\n" );
document.write( "This root is x = -1.\r\n" );
document.write( "

\n" ); document.write( "
\n" ); document.write( "
\n" );