document.write( "Question 1011076: Length of side of an equilateral triangle inscribed in a parabola y^2 -2x-2y-3=0 whose one angular point is vertex of the parabola \n" ); document.write( "
Algebra.Com's Answer #626707 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! Length of side of an equilateral triangle inscribed in a parabola y^2 -2x-2y-3=0 whose one angular point is vertex of the parabola \n" ); document.write( "--------------- \n" ); document.write( "The vertex is (-2,1) \n" ); document.write( "The LOS of the parabola is y = 1 \n" ); document.write( "--- \n" ); document.write( "Shift the parabola down 1 unit and right 2 units to the vertex is (0,0) \n" ); document.write( "--> y^2 = 2x \n" ); document.write( "================ \n" ); document.write( "The angles of the sides of the vertex of the triangle are +30 degs and -30 degs wrt the x-axis. \n" ); document.write( "---- \n" ); document.write( "m1 = atan(30) = sqrt(3)/3 \n" ); document.write( "m2 = -sqrt(3)/3 \n" ); document.write( "------ \n" ); document.write( "Equation of line with slope m1 thru (0,0) is \n" ); document.write( "y = m1*x = x*sqrt(3)/3\r \n" ); document.write( "\n" ); document.write( "x = y*sqrt(3) \n" ); document.write( "Sub for x in y^2 = 2x \n" ); document.write( "y^2 = 2y*sqrt(3) \n" ); document.write( "---- \n" ); document.write( "y^2 -2sqrt(3)y = 0 \n" ); document.write( "--> intersections at y = 0 (the vertex) \n" ); document.write( "and at y = 2sqrt(3) \n" ); document.write( "--> 1/2 side length = 2sqrt(3) \n" ); document.write( "sides = 4sqrt(3) \n" ); document.write( " \n" ); document.write( " |