document.write( "Question 1011001: If a sphere is inscribed within a cube, and the radius of the sphere is 3 ft., then what is the volume inside of the cube, but outside of the sphere?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #626529 by fractalier(6550) You can put this solution on YOUR website! If the radius is 3 feet, then the side of the cube is 6 feet. \n" ); document.write( "Then the volume inside of the cube, but outside of the sphere, \n" ); document.write( "V = V(cube) - V(sphere) = \n" ); document.write( "V = \n" ); document.write( "V = 216 - (4/3)(pi)(27) = \n" ); document.write( "V = 216 - 36(pi) cubic feet = about 103 cubic feet \n" ); document.write( " |