document.write( "Question 1010896: Sum of the first 6 terms of a geometric progression equals to 63.
\n" );
document.write( "Sum of the even terms equals to 42.
\n" );
document.write( "What's the common ratio and the initial value?\r
\n" );
document.write( "\n" );
document.write( "Simply wrote, it's
\n" );
document.write( "s6=63
\n" );
document.write( "a2+a4+a6=42
\n" );
document.write( "a1=?
\n" );
document.write( "r=?\r
\n" );
document.write( "\n" );
document.write( "Sum of the odd numbers therefore is A1+A3+A5=21.
\n" );
document.write( "I expand a2+a4+a6=42 to and a1+a3+a5=21 to
.
\n" );
document.write( "I can further simplify it to and
.
\n" );
document.write( "I have no idea how to progress further. \n" );
document.write( "
Algebra.Com's Answer #626410 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! An=A1 r^(n-1) \n" ); document.write( "A6=A1*r^(n-1);63=A1*r^(5) \n" ); document.write( "A1(r+r^3+r^5)=2A1(1+r^2+r^4) \n" ); document.write( "r^5-2r^4+r^3-2r^2+r-2=0 \n" ); document.write( "By synthetic division or graphing, r=2. \n" ); document.write( "Sn=A1(1-r^6)/1-2 \n" ); document.write( "63=A1(1-64)/-1 \n" ); document.write( "63=63A1 \n" ); document.write( "A1=1 \n" ); document.write( "A2=2 \n" ); document.write( "A3=4 \n" ); document.write( "A4=8 \n" ); document.write( "A5=16 \n" ); document.write( "A6=32 \n" ); document.write( "initial value is 1 \n" ); document.write( "common ratio is 2\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |