document.write( "Question 1010896: Sum of the first 6 terms of a geometric progression equals to 63.
\n" ); document.write( "Sum of the even terms equals to 42.
\n" ); document.write( "What's the common ratio and the initial value?\r
\n" ); document.write( "\n" ); document.write( "Simply wrote, it's
\n" ); document.write( "s6=63
\n" ); document.write( "a2+a4+a6=42
\n" ); document.write( "a1=?
\n" ); document.write( "r=?\r
\n" ); document.write( "\n" ); document.write( "Sum of the odd numbers therefore is A1+A3+A5=21.
\n" ); document.write( "I expand a2+a4+a6=42 to \"a1%2Ar%2Ba1%2Ar%5E3%2Ba1%2Ar%5E5=42\" and a1+a3+a5=21 to \"a1%2Ba1%2Ar%5E2%2Ba1%2Ar%5E4=21\".
\n" ); document.write( "I can further simplify it to \"a1%2A%28r%2Br%5E3%2Br%5E5%29=42\" and \"a1%2A%281%2Br%5E2%2Br%5E4%29=21\".
\n" ); document.write( "I have no idea how to progress further.
\n" ); document.write( "

Algebra.Com's Answer #626410 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
An=A1 r^(n-1)
\n" ); document.write( "A6=A1*r^(n-1);63=A1*r^(5)
\n" ); document.write( "A1(r+r^3+r^5)=2A1(1+r^2+r^4)
\n" ); document.write( "r^5-2r^4+r^3-2r^2+r-2=0
\n" ); document.write( "By synthetic division or graphing, r=2.
\n" ); document.write( "Sn=A1(1-r^6)/1-2
\n" ); document.write( "63=A1(1-64)/-1
\n" ); document.write( "63=63A1
\n" ); document.write( "A1=1
\n" ); document.write( "A2=2
\n" ); document.write( "A3=4
\n" ); document.write( "A4=8
\n" ); document.write( "A5=16
\n" ); document.write( "A6=32
\n" ); document.write( "initial value is 1
\n" ); document.write( "common ratio is 2\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );