document.write( "Question 1010841: I am preparing for my final and am stuck studying on this problem. Please help me by doing a formal proof for each line and the rule.\r
\n" );
document.write( "\n" );
document.write( "1. ~B&R
\n" );
document.write( "2. R⊃~(MvP)
\n" );
document.write( "3. (N⊃S)⊃~I
\n" );
document.write( "4. N⊃L
\n" );
document.write( "5. E⊃(S≡L)
\n" );
document.write( "6. E /.: ~I&~M \n" );
document.write( "
Algebra.Com's Answer #626317 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( " 1. ~B&R\r\n" ); document.write( " 2. R⊃~(MvP)\r\n" ); document.write( " 3. (N⊃S)⊃~I\r\n" ); document.write( " 4. N⊃L\r\n" ); document.write( " 5. E⊃(S≡L)\r\n" ); document.write( " 6. E /.: ~I&~M\r\n" ); document.write( "\r\n" ); document.write( " 7. R&~B 1, Commutation\r\n" ); document.write( " 8. R 7, Simplification\r\n" ); document.write( " 9. ~(MvP) 2,8, Modus Ponens\r\n" ); document.write( "10. ~M&~P 9, DeMorgan's Law\r\n" ); document.write( "11. ~M 10, Simplification \r\n" ); document.write( "12. S≡L 5,6, Modus Ponens\r\n" ); document.write( "13. (S⊃L)&(L⊃S) 12, Material equivalence\r\n" ); document.write( "14. L⊃S 13, Simplification\r\n" ); document.write( "15. N⊃S 4,14, Hypothetical syllogism\r\n" ); document.write( "16. ~I 3,15, Modus Ponens\r\n" ); document.write( "17. ~I&~M 16,11, Conjunction\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |