document.write( "Question 1010046: Can i please have help solving these proofs?
\n" ); document.write( "Use an ordinary proof (not conditional or indirect proof):
\n" ); document.write( "1. A ⊃ (Q ∨ R)
\n" ); document.write( "2. (R • Q) ⊃ B
\n" ); document.write( "3. A • ∼B / R ≡ ∼Q\r
\n" ); document.write( "\n" ); document.write( "a regular proof to derive the conclusion of the following argument:
\n" ); document.write( "1. (A & U) < > ~R
\n" ); document.write( "2. ~(~R v ~A) / ~U\r
\n" ); document.write( "\n" ); document.write( "a regular proof to derive the conclusion of the following argument:
\n" ); document.write( "1. X >Y
\n" ); document.write( "2. (Y v ~X) > (Y > Z) / ~Z > ~X
\n" ); document.write( "

Algebra.Com's Answer #625553 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "I'll do the first one to get you started\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
NumberStatementLines UsedReason
1A -> (Q v R)
2(R & Q) -> B
3A & ~B
:.R = ~Q
4~B & A3Commutation
5A3Simplification
6~B4Simplification
7Q v R1,5Modus Ponens
8~(R & Q)2,6Modus Tollens
9~R v ~Q8De Morgan's Law
10R -> ~Q9Material Implication
11~~Q v R7Double Negation
12~Q -> R11Material Implication
13(R -> ~Q) & (~Q -> R)10,12Conjunction
14R = ~Q13Material Equivalence
\n" ); document.write( "
\n" );