document.write( "Question 1009930: Conditional Proof - can use all 18 rules \r
\n" ); document.write( "\n" ); document.write( "(P -> Q) <-> (P -> (Q v ~P))
\n" ); document.write( "

Algebra.Com's Answer #625431 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Use a conditional proof twice\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
NumberStatementLines UsedReason
:.(P -> Q) <--> (P -> (Q v ~P))
1P -> QACP
2~P v Q1MI
3(~P v Q) v ~P2Add
4~P v (Q v ~P)3Assoc
5P -> (Q v ~P)4MI
6[P -> Q] -> [P -> (Q v ~P)]1-5CP
7P -> (Q v ~P)ACP
8~P v (Q v ~P)7MI
9~P v (~P v Q)8Comm
10(~P v ~P) v Q9Assoc
11~P v Q10Taut
12P -> Q11MI
13[P -> (Q v ~P)] -> [P -> Q]7-12CP
14{[P -> Q] -> [P -> (Q v ~P)]} & {[P -> (Q v ~P)] -> [P -> Q]}6,13Conj
15(P -> Q) <--> (P -> (Q v ~P))14ME
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ACP = Assumption for Conditional Proof
\n" ); document.write( "Add = Addition
\n" ); document.write( "Assoc = Association
\n" ); document.write( "Comm = Commutation
\n" ); document.write( "Conj = Conjunction
\n" ); document.write( "CP = Conditional Proof
\n" ); document.write( "Dist = Distribution
\n" ); document.write( "DM = De Morgan's Law
\n" ); document.write( "HS = Hypothetical Syllogism
\n" ); document.write( "ME = Material Equivalence
\n" ); document.write( "MI = Material Implication
\n" ); document.write( "MP = Modus Ponens
\n" ); document.write( "Simp = Simplification
\n" ); document.write( "Taut = Tautology
\n" ); document.write( "
\n" );