document.write( "Question 1009274: Can you please help me solve this proof? I am stuck at line six. \r
\n" ); document.write( "\n" ); document.write( "1. (A → E) → (D ∨ C)
\n" ); document.write( "2. D → (~B → C) ∴ ~C → (A ∨ B)\r
\n" ); document.write( "\n" ); document.write( "|3. ~C Assume
\n" ); document.write( "||4. ~A Assume
\n" ); document.write( "||5. (D∙~B)→C 2, EX
\n" ); document.write( "||6.
\n" ); document.write( "

Algebra.Com's Answer #624862 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
The idea is to assume ~C is true (line 3). Using the rules of inference/replacement, if we can lead to A v B somehow (line 25), then that proves ~C -> (A v B) is true.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
NumberStatementLines UsedReason
1(A -> E) -> (D v C)
2D -> (~B -> C)
:.~C -> (A v B)
3~CACP
4(D & ~B) -> C2EXP
5~(D & ~B)4,3MT
6~D v ~~B5DM
7~D v B6DN
8D -> B7MI
9~B -> ~D8Trans
10~(A -> E) v (D v C)1MI
11~(~A v E) v (D v C)10MI
12(~~A & ~E) v (D v C)11DM
13(A & ~E) v (D v C)12DN
14(D v C) v (A & ~E)13Comm
15[(D v C) v A] & [(D v C) v ~E]14Dist
16(D v C) v A15Simp
17(C v D) v A16Comm
18C v (D v A)17Assoc
19D v A18,3DS
20~~D v A19DN
21~D -> A20MI
22~B -> A9,21HS
23~~B v A22MI
24B v A23DN
25A v B24Comm
26~C -> (A v B)3-25CP
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Acroynyms/Abbreviations used\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "ACP = assumption for conditional proof
\n" ); document.write( "Assoc = associative property
\n" ); document.write( "Comm = commutation
\n" ); document.write( "CP = conditional proof
\n" ); document.write( "Dist = distribution
\n" ); document.write( "DM = de morgan's law
\n" ); document.write( "DN = double negation
\n" ); document.write( "DS = disjunctive syllogism
\n" ); document.write( "EXP = exportation
\n" ); document.write( "HS = hypothetical syllogism
\n" ); document.write( "MI = material implication
\n" ); document.write( "MT = modus tollens
\n" ); document.write( "Simp = simplification
\n" ); document.write( "Trans = transposition
\n" ); document.write( "
\n" );