document.write( "Question 1009174: Show that the point (6,6),(2,3) and (4,7) are the vertices of a right angled triangle \n" ); document.write( "
Algebra.Com's Answer #624700 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Let\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "P = (6,6)
\n" ); document.write( "Q = (2,3)
\n" ); document.write( "R = (4,7)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find the slope of segment PQ to get \"3%2F4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "Find the slope of segment PR to get \"-1%2F2\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Find the slope of segment QR to get \"2\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Multiply the slopes of PR and QR to get\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(slope of PR)*(slope of QR) = (-1/2)*(2) = -1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since the product of the two slopes is -1, this means that segment PR and segment QR are perpendicular. We have a right angle form at where the segments meet (at point R)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we definitely have a right triangle.
\n" ); document.write( "
\n" );