document.write( "Question 1008893: Solving the following equation will require you to use the quadratic formula. Solve the equation for θ between 0° and 360°, and round your answers to the nearest tenth of a degree.\r
\n" );
document.write( "\n" );
document.write( "2sin^2θ = 3−4cosθ \n" );
document.write( "
Algebra.Com's Answer #624427 by Theo(13342)![]() ![]() You can put this solution on YOUR website! problem is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2sin^2(theta) = 3 - 4cos(theta).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since sin^2(theta) = 1 - cos^2(theta), substitute for sin^2(theta) to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2 * (1 - cos^2(theta) = 3 - 4cos(theta)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "simplify to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2 - 2cos^2(theta) = 3 - 4cos(theta)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "add 2cos^2(theta) and subtract 2 from both sides of the equation to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "0 = 3 - 4cos(theta) + 2cos^2(theta) - 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "combine like terms and flip the equation to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2cos^2(theta) - 4cos(theta) + 1 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that's your quadratic equation that you need to factor.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "use the quadratic formula to factor it as follows:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since the equation is in standard form of ax^2 + bx + c = 0, you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a = 2 \n" ); document.write( "b = -4 \n" ); document.write( "c = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the quadratic formula is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "cos(theta) = -b plus or minus sqrt(b^2 - 4ac)\r\n" ); document.write( " --------------------------------\r\n" ); document.write( " 2a\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "replace a,b,c with their values and you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "cos(theta) = -(-4) plus or minus sqrt((-4)^2 - 4*2*1)\r\n" ); document.write( " --------------------------------\r\n" ); document.write( " 2*2\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you will get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(theta) = (4 + sqrt(8))/4 \n" ); document.write( "or: \n" ); document.write( "cos(theta) = (4 - sqrt(8))/4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the result will be:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(theta) = 1.707106781 \n" ); document.write( "or: \n" ); document.write( "cos(theta) = .2928932188\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cosine can't be greater than 1, so the solution is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(theta) = .2928932188\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "solve for theta to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "theta = 72.96875154 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that would be in quadrant 1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cosine is positive in quadrants 1 and 4 only.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your angle is therefore in quadrant 1 and in quadrant 4.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the angle in quadrant 4 is 360 - 72.96875154 = 287.0312485 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your solution is that theta = 72.96875154 or 287.0312485.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "round that to a tenth of a degree and your solution is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "theta = 73.0 or 287.0 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the following picture shows the solution graphically.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2 equations were graphed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "they are:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y = sin^2(theta)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y = 3 - 4cos(theta)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the intersection of the 2 equations on the graph is when their values are equal.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that occurs at theta = 73 and theta = 287 between 0 and 360 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the graphical solution conforming to the algebraic solution is shown below:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this graph is of the equation y = 2cos^2(theta) - 4cos(theta) + 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the solution, in this case, is when the graph crosses the x-axis.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |