document.write( "Question 1008642: Given the quadratic function y=ax^2+bx+c, the maximum value is a^2+4 at x=1 and the graph passes through the point (3,1). Find the values for a, b and c. \n" ); document.write( "
Algebra.Com's Answer #624375 by ankor@dixie-net.com(22740)![]() ![]() You can put this solution on YOUR website! Given the quadratic function y=ax^2+bx+c, the maximum value is a^2+4 at x=1 and the graph passes through the point (3,1). \n" ); document.write( " Find the values for a, b and c. \n" ); document.write( ": \n" ); document.write( "At x^2 + 4, when x=1, find y \n" ); document.write( "y = 2^2 + 4 \n" ); document.write( " y = 5 \n" ); document.write( ": \n" ); document.write( "We know the axis of symmetry (max value) x=1 \n" ); document.write( "The given point to the right is 3,1 \n" ); document.write( "Therefore the point to left is -1,1 \n" ); document.write( ": \n" ); document.write( "Three equations we can use to find a, b, c \n" ); document.write( ": \n" ); document.write( "-1, 1: a - b + c = 1 \n" ); document.write( " 1, 5: a + b + c = 5 \n" ); document.write( " 3, 1: 9a + 3b + c = 1 \n" ); document.write( ": \n" ); document.write( "We can use the 1st two equations to find b \n" ); document.write( "a + b + c = 5 \n" ); document.write( "a - b + c = 1 \n" ); document.write( "-----------------Subtraction eliminates a and c \n" ); document.write( "2b = 4 \n" ); document.write( "b = 2 \n" ); document.write( ": \n" ); document.write( "using 2nd and 3rd equations, replace b with 2 \n" ); document.write( "9a + 3(2) + c = 1 \n" ); document.write( "9a + 6 + c = 1 \n" ); document.write( "9a + c = -5 (subtracted 6 from both sides) \n" ); document.write( "and \n" ); document.write( "a + 2 + c = 5 \n" ); document.write( "a + c = 3 \n" ); document.write( "Use elimination with theses two equations to find a \n" ); document.write( "9a + c = -5 \n" ); document.write( " a + c = 3 \n" ); document.write( "--------------Subtraction eliminates c, find a \n" ); document.write( "8a = -8 \n" ); document.write( "a = -1 \n" ); document.write( ": \n" ); document.write( "Use the 2nd original equation, a + b + c = 5; to find c, replace a and b \n" ); document.write( "-1 + 2 + c = 5 \n" ); document.write( "c = 5 - 1 \n" ); document.write( "c = 4 \n" ); document.write( ": \n" ); document.write( "Our equation: y = -x^2 + 2x + 4, (green) \n" ); document.write( ": \n" ); document.write( "Plotting the given equation and the above equation \n" ); document.write( " \n" ); document.write( "You can see the max occurs where the two curves intersect; x=1; y=5\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |