.
\n" );
document.write( "Please solve:
\n" );
document.write( "Sn=a^2+(a+d)^2+(a+2d)^2+(a+3d)^2+....+[(a+(n-1)d]^2
\n" );
document.write( "Sn=a²+(a+d)²+(a+2d)²+(a+3d)²+....+[(a+(n-1)d]²
\n" );
document.write( "----------------------------------------------------\r
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Let us consider one typical term
. It is\r\n" );
document.write( "
+
+
.\r\n" );
document.write( "\r\n" );
document.write( "We need to sum up n such terms/trinomials from k = 0 to k = n-1.\r\n" );
document.write( "\r\n" );
document.write( "By combining the first addends of these trinomials, you will get
, right?\r\n" );
document.write( "\r\n" );
document.write( "By combining the second addends of these trinomials, you will get
.\r\n" );
document.write( "\r\n" );
document.write( "If you know it, this sum
is equal to
. \r\n" );
document.write( "\r\n" );
document.write( "It is the sum of a special arithmetic progression which is the sequence of the first (n-1) natural numbers. \r\n" );
document.write( "If you don't know it, see the lesson Arithmetic progressions in this site. \r\n" );
document.write( "\r\n" );
document.write( "By combining the third addends of these trinomials, you will get
.\r\n" );
document.write( "\r\n" );
document.write( "This sum of squares of the first (n-1) natural numbers
is equal to
.\r\n" );
document.write( "\r\n" );
document.write( "For the proof see, for example, the lesson Mathematical induction for sequences other than arithmetic or geometric in this site. \r\n" );
document.write( "\r\n" );
document.write( "Now we can finalize our calculations.\r\n" );
document.write( "\r\n" );
document.write( "
=
= \r\n" );
document.write( "\r\n" );
document.write( "=
+
.
+
= \r\n" );
document.write( "\r\n" );
document.write( "=
+
+
.
.\r\n" );
document.write( "
\n" );
document.write( " \n" );
document.write( "