document.write( "Question 1007348: Suppose cos(u)= 5/13, and sin(u) is negative. Find sin(u-pi), cos(u-pi), sin(u-pi/2), cos(u-pi/2)\r
\n" );
document.write( "\n" );
document.write( "I tried solving this question but I could not get the right answer. Here are the step I tried for solving this problem.\r
\n" );
document.write( "\n" );
document.write( "cos(u) 5/13 = x/r\r
\n" );
document.write( "\n" );
document.write( "Use pythagoream theorem to find sin(u)
\n" );
document.write( "x=5, r=13\r
\n" );
document.write( "\n" );
document.write( "r^2=x^2+y^2
\n" );
document.write( "13^2=5^2+y^2
\n" );
document.write( "169=25+y^2
\n" );
document.write( "sqrt(144)=y^2 ==> y=12\r
\n" );
document.write( "\n" );
document.write( "sin(u)= -12/13\r
\n" );
document.write( "\n" );
document.write( "sin(u-pi)
\n" );
document.write( "=(-12/13)-(0/1)
\n" );
document.write( "=(-12/13)-0 ==> -12/13\r
\n" );
document.write( "\n" );
document.write( "cos(u-pi)
\n" );
document.write( "=(5/13)-(1/0)
\n" );
document.write( "=undefined\r
\n" );
document.write( "\n" );
document.write( "sin(u-pi/2)
\n" );
document.write( "=(-12/13)-(sqrt(2)/2)
\n" );
document.write( "=(-12-sqrt(2))/11\r
\n" );
document.write( "\n" );
document.write( "cos(u-pi/2)
\n" );
document.write( "=(5/13)-(sqrt(2)/2)
\n" );
document.write( "=(5-sqrt(2))/11
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #623282 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! cos(u) = 5/13 \n" ); document.write( "sin(u) = -12/13 (found from the pythagorean theorem) \n" ); document.write( "angle u is in quadrant 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use this page to look at the identities used. In this case, I'm going to use these two identities\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(x - y) = sin(x)cos(y) - cos(x)sin(y) \n" ); document.write( "cos(x - y) = cos(x)cos(y) + sin(x)sin(y)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "those identities are found in the \"Sum and Difference Formulas\" section on page 2 of the reference sheet.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(u - pi) = sin(u)cos(pi) - cos(u)sin(pi) \n" ); document.write( "sin(u - pi) = sin(u)(-1) - cos(u)(0) \n" ); document.write( "sin(u - pi) = -sin(u) \n" ); document.write( "sin(u - pi) = -(-12/13) \n" ); document.write( "sin(u - pi) = 12/13\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(u - pi) = cos(u)*cos(pi) + sin(u)*sin(pi) \n" ); document.write( "cos(u - pi) = cos(u)*(-1) + sin(u)*0 \n" ); document.write( "cos(u - pi) = -cos(u) \n" ); document.write( "cos(u - pi) = -5/13\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "sin(u - pi/2) = sin(u)cos(pi/2) - cos(u)sin(pi/2) \n" ); document.write( "sin(u - pi/2) = sin(u)(0) - cos(u)(1) \n" ); document.write( "sin(u - pi/2) = -cos(u) \n" ); document.write( "sin(u - pi/2) = -5/13\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(u - pi/2) = cos(u)*cos(pi/2) + sin(u)*sin(pi/2) \n" ); document.write( "cos(u - pi/2) = cos(u)*(0) + sin(u)*1 \n" ); document.write( "cos(u - pi/2) = sin(u) \n" ); document.write( "cos(u - pi/2) = -12/13 \n" ); document.write( " |