document.write( "Question 1007228: Use de Moivre's Theorem to find the following. Write your answer in standard form.
\n" );
document.write( "(1 + i)^8 \n" );
document.write( "
Algebra.Com's Answer #623207 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! (1 + i)^8 \n" ); document.write( "The polar form of (1 + i) = sqrt(2) * (cos(pi/4) + (i * sin(pi/4))) \n" ); document.write( "******************************************************************* \n" ); document.write( "complex number = (a + bi) \n" ); document.write( "polar form = r(cos(theta) + i*sin(theta)) \n" ); document.write( "consider (1 + i) \n" ); document.write( "r = sqrt(a + b) = sqrt(2) where a = 1 and b = 1 \n" ); document.write( "theta is pi/4 since a = 1, b=1, we have an isosceles right triangle \n" ); document.write( "******************************************************************* \n" ); document.write( "By de Moivre's Theorem we have \n" ); document.write( "(1 + i)^12 = [sqrt(2) * (cos(pi/4) + (i * sin(pi/4)))]^8 = \n" ); document.write( "(sqrt(2))^8 * (cos(pi/4) + i*sin(pi/4))^8 = \n" ); document.write( "2^4 * (cos(2pi) + i*sin(2pi)) \n" ); document.write( "16 * ( 1 + (i * 0) ) = \n" ); document.write( "16 \n" ); document.write( " \n" ); document.write( " |