document.write( "Question 86191: Theorem: The bisector of the vertex angle of an isosceles triangle is perpendicular to the base of the triangle.\r
\n" ); document.write( "\n" ); document.write( "Given:?
\n" ); document.write( "To prove:?
\n" ); document.write( "Analysis:?\r
\n" ); document.write( "\n" ); document.write( "I have to proof by writing a statement and the reason for that statement.\r
\n" ); document.write( "\n" ); document.write( "Thank you
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #62305 by scianci(186)\"\" \"About 
You can put this solution on YOUR website!
Given: Isosceles triangle ABC with AB congruent to AC [you draw]
\n" ); document.write( " AD bisects angle BAC [you draw ; endpoint D on base BC]\r
\n" ); document.write( "\n" ); document.write( "Prove: AD perpendicular to BC\r
\n" ); document.write( "\n" ); document.write( "1. Isosceles triangle ABC with AB congruent to AC 1. given
\n" ); document.write( " AD bisects angle BAC
\n" ); document.write( "2. angle BAD congruent to angle CAD 2. def. of angle bisector
\n" ); document.write( "3. AD congruent to AD 3. reflexive property
\n" ); document.write( "4. triangle BAD congruent to triangle CAD 4. SAS
\n" ); document.write( "5. angle BDA congruent to angle CDA 5. CPCTC
\n" ); document.write( "6. m angle BDA + m angle CDA = 180 6. linear pair postulate
\n" ); document.write( "7. m angle BDA = m angle CDA 7. def. congruent angles
\n" ); document.write( "8. m angle BDA + m angle BDA = 180 8. substitution
\n" ); document.write( "9. 2*m angle BDA = 180 9. substitution
\n" ); document.write( "10. m angle BDA = 90 10. division prop.
\n" ); document.write( "11. AD perpendicular to BC 11. def. perpendicular
\n" ); document.write( "
\n" );