document.write( "Question 86191: Theorem: The bisector of the vertex angle of an isosceles triangle is perpendicular to the base of the triangle.\r
\n" );
document.write( "\n" );
document.write( "Given:?
\n" );
document.write( "To prove:?
\n" );
document.write( "Analysis:?\r
\n" );
document.write( "\n" );
document.write( "I have to proof by writing a statement and the reason for that statement.\r
\n" );
document.write( "\n" );
document.write( "Thank you
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #62305 by scianci(186)![]() ![]() ![]() You can put this solution on YOUR website! Given: Isosceles triangle ABC with AB congruent to AC [you draw] \n" ); document.write( " AD bisects angle BAC [you draw ; endpoint D on base BC]\r \n" ); document.write( "\n" ); document.write( "Prove: AD perpendicular to BC\r \n" ); document.write( "\n" ); document.write( "1. Isosceles triangle ABC with AB congruent to AC 1. given \n" ); document.write( " AD bisects angle BAC \n" ); document.write( "2. angle BAD congruent to angle CAD 2. def. of angle bisector \n" ); document.write( "3. AD congruent to AD 3. reflexive property \n" ); document.write( "4. triangle BAD congruent to triangle CAD 4. SAS \n" ); document.write( "5. angle BDA congruent to angle CDA 5. CPCTC \n" ); document.write( "6. m angle BDA + m angle CDA = 180 6. linear pair postulate \n" ); document.write( "7. m angle BDA = m angle CDA 7. def. congruent angles \n" ); document.write( "8. m angle BDA + m angle BDA = 180 8. substitution \n" ); document.write( "9. 2*m angle BDA = 180 9. substitution \n" ); document.write( "10. m angle BDA = 90 10. division prop. \n" ); document.write( "11. AD perpendicular to BC 11. def. perpendicular \n" ); document.write( " |