document.write( "Question 1006566: If A is an invertible 2 x 2 matrix,then A^t is invertible and (At)^-1 =
\n" );
document.write( "(A^-1)^t.
\n" );
document.write( " is this statement true or false and why? \n" );
document.write( "
Algebra.Com's Answer #622675 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Note: the notation \"[a,b;c,d]\" means \"the matrix with the first row being a,b and the second row being c,d\"\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Matrix A is some 2 x 2 matrix, so let's set it up as \n" ); document.write( "A = [a,b;c,d] \n" ); document.write( "where a,b,c,d are constants\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A is invertible ---> determinant D = ad-bc is nonzero\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A^T = [a,c;b,d] \n" ); document.write( "determinant of A^T = ad-bc = determinant of matrix A\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note: only b and c swap places when we go from A to A^T. So both A and A^T have the same determinant\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since A has a nonzero determinant, so does A^T.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If A is invertible, then A^T is definitely invertible.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the first part of the claim has been proven true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's compute the inverse of matrix A\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A = [a,b;c,d] \n" ); document.write( "A^(-1) = 1/D * [d,-b;-c,a] \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now let's transpose A^(-1) to get \n" ); document.write( "(A^(-1))^T = 1/D * [d,-c;-b,a] \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now compute the inverse of matrix A^T\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A^T = [a,c;b,d] \n" ); document.write( "(A^T)^(-1) = 1/D * [d,-c;-b,a]\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------\r \n" ); document.write( "\n" ); document.write( "So,\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(A^T)^(-1) = 1/D * [d,-c;-b,a] \n" ); document.write( "and \n" ); document.write( "(A^(-1))^T = 1/D * [d,-c;-b,a] \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "we can see that (A^T)^(-1) = (A^(-1))^T is true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The second part of the statement has been proven true.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Both parts of the statement are true. A^T is invertible and the equation given holds true. \n" ); document.write( " \n" ); document.write( " |