Algebra.Com's Answer #62235 by jim_thompson5910(35256)  You can put this solution on YOUR website! 1.\r \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Completing the Square to Get a Quadratic into Vertex Form | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Start with the given equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Subtract from both sides \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factor out the leading coefficient  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Take half of the x coefficient to get (ie ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now square to get (ie ) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add and subtract this value inside the parenthesis. Doing both the addition and subtraction of does not change the equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now factor to get  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Distribute \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add to both sides to isolate y \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Combine like terms \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now the quadratic is in vertex form where , , and . Remember (h,k) is the vertex and \"a\" is the stretch/compression factor. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Check: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the original equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the final equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is also ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So if these two equations were graphed on the same coordinate plane, one would overlap another perfectly. So this visually verifies our answer. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "2.\r \n" );
document.write( "\n" );
document.write( "\n" );
document.write( "\n" );
document.write( " Solved by pluggable solver: Completing the Square to Get a Quadratic into Vertex Form | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Start with the given equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Subtract from both sides \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Factor out the leading coefficient  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Take half of the x coefficient to get (ie ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now square to get (ie ) \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add and subtract this value inside the parenthesis. Doing both the addition and subtraction of does not change the equation \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now factor to get  \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Distribute \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Multiply \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now add to both sides to isolate y \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Combine like terms \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Now the quadratic is in vertex form where , , and . Remember (h,k) is the vertex and \"a\" is the stretch/compression factor. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Check: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the original equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Notice if we graph the final equation we get: \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " Graph of . Notice how the vertex is also ( , ). \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " So if these two equations were graphed on the same coordinate plane, one would overlap another perfectly. So this visually verifies our answer. \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " | \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "We can find the x-intercepts by the quadratic formula\r \n" );
document.write( "\n" );
document.write( "1.\r \n" );
document.write( "\n" );
document.write( "Starting with the general quadratic\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "the general form of the quadratic equation is:\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So lets solve \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Plug in a=1, b=2, and c=-8\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Square 2 to get 4\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Multiply to get \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Combine like terms in the radicand (everything under the square root)\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Simplify the square root\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Multiply 2 and 1 to get 2\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So now the expression breaks down into two parts\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " or \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Lets look at the first part:\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Add the terms in the numerator\r \n" );
document.write( "\n" );
document.write( " Divide\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So one answer is\r \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Now lets look at the second part:\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Subtract the terms in the numerator\r \n" );
document.write( "\n" );
document.write( " Divide\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So another answer is\r \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So our solutions are:\r \n" );
document.write( "\n" );
document.write( " or \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Notice when we graph we get:\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "and we can see that the roots are and . This verifies our answer\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "2.\r \n" );
document.write( "\n" );
document.write( "Starting with the general quadratic\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "the general form of the quadratic equation is:\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So lets solve \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Plug in a=1, b=-5, and c=-10\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Square -5 to get 25\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Multiply to get \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Combine like terms in the radicand (everything under the square root)\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Simplify the square root\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " Multiply 2 and 1 to get 2\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So now the expression breaks down into two parts\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " or \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Which approximate to\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " or \r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "So our solutions are:\r \n" );
document.write( "\n" );
document.write( " or \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "Notice when we graph we get:\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "when we use the root finder feature on our calculator, we find that and .So this verifies our answer \n" );
document.write( " |