document.write( "Question 1005464: The sum of the 6th and 8th terms of an A.P is 142 . If the fourth term is 49 , (a) find the first term . (b) the common difference . (c) the sum of the first seven terms of the progression. \n" ); document.write( "
Algebra.Com's Answer #621718 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
The sum of the 6th and 8th terms of an A.P is 142 . If the fourth term is 49 , (a) find the first term . (b) the common difference . (c) the sum of the first seven terms of the progression.
\n" ); document.write( "----
\n" ); document.write( "6th term:: a(1)+5d
\n" ); document.write( "8th term:: a(1)+7d
\n" ); document.write( "-----
\n" ); document.write( "Equation:
\n" ); document.write( "sum = 142
\n" ); document.write( "2*a(1) + 12d = 142
\n" ); document.write( "----
\n" ); document.write( "a(1) + 6d = 71
\n" ); document.write( "=====
\n" ); document.write( "4th term:: a(1) + 3d = 49
\n" ); document.write( "--------
\n" ); document.write( "Equations:
\n" ); document.write( "a(1) + 6d = 71
\n" ); document.write( "a(1) + 3d = 49
\n" ); document.write( "-----
\n" ); document.write( "Subtract and solve for \"d\"::
\n" ); document.write( "3d = 22
\n" ); document.write( "d = 22/3
\n" ); document.write( "----
\n" ); document.write( "Solve for a(1)::
\n" ); document.write( "a(1) + 3d = 49
\n" ); document.write( "a(1) + 22 = 49
\n" ); document.write( "a(1) = 27
\n" ); document.write( "------------------
\n" ); document.write( "Sum the 1st 7 terms:
\n" ); document.write( "S(7) = (7/2)(a(1)+a(7)]
\n" ); document.write( "S(7) = (7/2)(27+71)
\n" ); document.write( "S(7) = (7/2)(98)
\n" ); document.write( "S(7) = 7*49 = 343
\n" ); document.write( "---------------\r
\n" ); document.write( "\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );