document.write( "Question 1002128: differentiate the following \r
\n" );
document.write( "\n" );
document.write( "f(s)=(1+s+e^s)(2e^-s+s)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #619127 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! f(s)=(1+s+e^s)(2e^-s+s) \n" ); document.write( "**************************************************************************** \n" ); document.write( "d/ds((1+s+e^s) (2/e^s+s)) \n" ); document.write( "Rewrite the expression: (1+s+e^s) (2/e^s+s) = (2/e^s+s) (1+e^s+s): \n" ); document.write( " = d/ds((2/e^s+s) (1+e^s+s)) \n" ); document.write( "Use the product rule, d/ds(u v) = v ( du)/( ds) + u ( dv)/( ds), where u = s+2 e^(-s) and v = s+e^s+1: \n" ); document.write( " = (1+e^s+s) (d/ds(2/e^s+s))+(2 e^(-s)+s) (d/ds(1+e^s+s)) \n" ); document.write( "******************************************************************************* \n" ); document.write( "Differentiate the sum term by term and factor out constants: \n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) 2 d/ds(e^(-s))+d/ds(s) \n" ); document.write( "Using the chain rule, d/ds(e^(-s)) = ( de^u)/( du) ( du)/( ds), where u = -s and ( d)/( du)(e^u) = e^u: \n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (d/ds(s)+2 (d/ds(-s))/e^s) \n" ); document.write( "****************************************************************************** \n" ); document.write( "Factor out constants: \n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (d/ds(s)+(2 -d/ds(s))/e^s) \n" ); document.write( "Simplify the expression: \n" ); document.write( " = (1+e^s+s) (d/ds(s)-(2 (d/ds(s)))/e^s)+(2/e^s+s) (d/ds(1+e^s+s)) \n" ); document.write( "****************************************************************************** \n" ); document.write( "The derivative of s is 1: \n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (d/ds(s)-(1 2)/e^s) \n" ); document.write( "The derivative of s is 1: \n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (-2/e^s+1) \n" ); document.write( "Differentiate the sum term by term: \n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) d/ds(1)+d/ds(e^s)+d/ds(s) \n" ); document.write( "The derivative of 1 is zero: \n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (d/ds(e^s)+d/ds(s)+0) \n" ); document.write( "Simplify the expression: \n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (d/ds(e^s)+d/ds(s)) \n" ); document.write( "The derivative of e^s is e^s: \n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (d/ds(s)+e^s) \n" ); document.write( "The derivative of s is 1: \n" ); document.write( "****************************************************************************** \n" ); document.write( "Answer: = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (e^s+1) \n" ); document.write( " |