document.write( "Question 1002128: differentiate the following \r
\n" ); document.write( "\n" ); document.write( "f(s)=(1+s+e^s)(2e^-s+s)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #619127 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
f(s)=(1+s+e^s)(2e^-s+s)
\n" ); document.write( "****************************************************************************
\n" ); document.write( "d/ds((1+s+e^s) (2/e^s+s))
\n" ); document.write( "Rewrite the expression: (1+s+e^s) (2/e^s+s) = (2/e^s+s) (1+e^s+s):
\n" ); document.write( " = d/ds((2/e^s+s) (1+e^s+s))
\n" ); document.write( "Use the product rule, d/ds(u v) = v ( du)/( ds) + u ( dv)/( ds), where u = s+2 e^(-s) and v = s+e^s+1:
\n" ); document.write( " = (1+e^s+s) (d/ds(2/e^s+s))+(2 e^(-s)+s) (d/ds(1+e^s+s))
\n" ); document.write( "*******************************************************************************
\n" ); document.write( "Differentiate the sum term by term and factor out constants:
\n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) 2 d/ds(e^(-s))+d/ds(s)
\n" ); document.write( "Using the chain rule, d/ds(e^(-s)) = ( de^u)/( du) ( du)/( ds), where u = -s and ( d)/( du)(e^u) = e^u:
\n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (d/ds(s)+2 (d/ds(-s))/e^s)
\n" ); document.write( "******************************************************************************
\n" ); document.write( "Factor out constants:
\n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (d/ds(s)+(2 -d/ds(s))/e^s)
\n" ); document.write( "Simplify the expression:
\n" ); document.write( " = (1+e^s+s) (d/ds(s)-(2 (d/ds(s)))/e^s)+(2/e^s+s) (d/ds(1+e^s+s))
\n" ); document.write( "******************************************************************************
\n" ); document.write( "The derivative of s is 1:
\n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (d/ds(s)-(1 2)/e^s)
\n" ); document.write( "The derivative of s is 1:
\n" ); document.write( " = (2/e^s+s) (d/ds(1+e^s+s))+(1+e^s+s) (-2/e^s+1)
\n" ); document.write( "Differentiate the sum term by term:
\n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) d/ds(1)+d/ds(e^s)+d/ds(s)
\n" ); document.write( "The derivative of 1 is zero:
\n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (d/ds(e^s)+d/ds(s)+0)
\n" ); document.write( "Simplify the expression:
\n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (d/ds(e^s)+d/ds(s))
\n" ); document.write( "The derivative of e^s is e^s:
\n" ); document.write( " = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (d/ds(s)+e^s)
\n" ); document.write( "The derivative of s is 1:
\n" ); document.write( "******************************************************************************
\n" ); document.write( "Answer: = (1-2/e^s) (1+e^s+s)+(2/e^s+s) (e^s+1)
\n" ); document.write( "
\n" );