document.write( "Question 1000987: Form a polynomial f(x) with real coefficients having the degree and zeros. Degree 5; zeros: -6;-i; 5+i. \n" ); document.write( "
Algebra.Com's Answer #618302 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
The roots are 5, +/- i and 5+i, 5-i, since complex roots are conjugate
\n" ); document.write( "The polynomial has the form (x+6)(x^2+1)and another quadratic, whose roots are 5+i and 5-i
\n" ); document.write( "ax^2+bx+c=0
\n" ); document.write( "let a=1
\n" ); document.write( "b must be some multiple of -5 (quadratic formula, -b...)
\n" ); document.write( "sqrt(b^2-4ac)=-1
\n" ); document.write( "using -10 for b, and 1 for a,
\n" ); document.write( "x=(1/2) (-10+/-sqrt(100-(4)(1)26))
\n" ); document.write( "x=(1/2) (-10 +/- sqrt (-4))
\n" ); document.write( "x=(1/2) (-10 +/- 2i)
\n" ); document.write( "x=-5 +/- i
\n" ); document.write( "the last quadratic is x^2-10x+26
\n" ); document.write( "The polynomial is
\n" ); document.write( "(x+6)(x^2+1)((x^2-10x+26)
\n" ); document.write( "\"graph%28300%2C200%2C-10%2C10%2C-1000%2C3000%2Cx%5E5-4x%5E4-31x%5E3%2B152x%5E2-34x%2B156%29\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );