document.write( "Question 999834: A cylinder is inscribed in a sphere with radius 6. Find the height h of the cylinder with the maximum possible volume?\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thank you
\n" ); document.write( "

Algebra.Com's Answer #617378 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A sphere radius that intersects the edge of the cylinder base is the hypotenuse of a right triangle with legs that are cylinder radius and one-half of the cylinder height. Given a sphere with radius 6, the radius and height of the cylinder are related thus:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The volume of the cylinder is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Substituting:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Simplifying:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Take the first derivative\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Set the first derivative equal to zero and solve for the value of the height that gives the maximum volume.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );